29 research outputs found

    3D reconstruction of medical images from slices automatically landmarked with growing neural models

    Get PDF
    In this study, we utilise a novel approach to segment out the ventricular system in a series of high resolution T1-weighted MR images. We present a brain ventricles fast reconstruction method. The method is based on the processing of brain sections and establishing a fixed number of landmarks onto those sections to reconstruct the ventricles 3D surface. Automated landmark extraction is accomplished through the use of the self-organising network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates the classical surface reconstruction and filtering processes. The proposed method offers higher accuracy compared to methods with similar efficiency as Voxel Grid

    Real time motion estimation using a neural architecture implemented on GPUs

    Get PDF
    This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis

    Evaluation of different chrominance models in the detection and reconstruction of faces and hands using the growing neural gas network

    Get PDF
    Physical traits such as the shape of the hand and face can be used for human recognition and identification in video surveillance systems and in biometric authentication smart card systems, as well as in personal health care. However, the accuracy of such systems suffers from illumination changes, unpredictability, and variability in appearance (e.g. occluded faces or hands, cluttered backgrounds, etc.). This work evaluates different statistical and chrominance models in different environments with increasingly cluttered backgrounds where changes in lighting are common and with no occlusions applied, in order to get a reliable neural network reconstruction of faces and hands, without taking into account the structural and temporal kinematics of the hands. First a statistical model is used for skin colour segmentation to roughly locate hands and faces. Then a neural network is used to reconstruct in 3D the hands and faces. For the filtering and the reconstruction we have used the growing neural gas algorithm which can preserve the topology of an object without restarting the learning process. Experiments conducted on our own database but also on four benchmark databases (Stirling’s, Alicante, Essex, and Stegmann’s) and on deaf individuals from normal 2D videos are freely available on the BSL signbank dataset. Results demonstrate the validity of our system to solve problems of face and hand segmentation and reconstruction under different environmental conditions

    Fast 2D/3D object representation with growing neural gas

    Get PDF
    This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction

    TactileGCN: A Graph Convolutional Network forPredicting Grasp Stability with Tactile Sensors

    Get PDF
    Tactile sensors provide useful contact data during the interaction with an object which can be used to accurately learn to determine the stability of a grasp. Most of the works in the literature represented tactile readings as plain feature vectors or matrix-like tactile images, using them to train machine learning models. In this work, we explore an alternative way of exploiting tactile information to predict grasp stability by leveraging graph-like representations of tactile data, which preserve the actual spatial arrangement of the sensor's taxels and their locality. In experimentation, we trained a Graph Neural Network to binary classify grasps as stable or slippery ones. To train such network and prove its predictive capabilities for the problem at hand, we captured a novel dataset of approximately 5000 three-fingered grasps across 41 objects for training and 1000 grasps with 10 unknown objects for testing. Our experiments prove that this novel approach can be effectively used to predict grasp stability.This work has been funded by the Spanish Government with Feder funds (TIN2016-76515-R and DPI2015-68087-R), by two grants for PhD studies (FPU15/04516 and BES-2016-07829), by regional projects (GV/2018/022 and GRE16-19) and by the European Commission (COMMANDIA SOE2/P1/F0638), action supported by Interreg-V Sudoe

    Evaluation of different chrominance models in the detection and reconstruction of faces and hands using the growing neural gas network

    Get PDF
    Physical traits such as the shape of the hand and face can be used for human recognition and identifcation in video surveillance systems and in biometric authentication smart card systems, as well as in personal health care. However, the accuracy of such systems sufers from illumination changes, unpredictability, and variability in appearance (e.g. occluded faces or hands, cluttered backgrounds, etc.). This work evaluates diferent statistical and chrominance models in diferent environments with increasingly cluttered backgrounds where changes in lighting are common and with no occlusions applied, in order to get a reliable neural network reconstruction of faces and hands, without taking into account the structural and temporal kinematics of the hands. First a statistical model is used for skin colour segmentation to roughly locate hands and faces. Then a neural network is used to reconstruct in 3D the hands and faces. For the fltering and the reconstruction we have used the growing neural gas algorithm which can preserve the topology of an object without restarting the learning process. Experiments conducted on our own database but also on four benchmark databases (Stirling’s, Alicante, Essex, and Stegmann’s) and on deaf individuals from normal 2D videos are freely available on the BSL signbank dataset. Results demonstrate the validity of our system to solve problems of face and hand segmentation and reconstruction under diferent environmental conditions

    The Rocketbox Library and the Utility of Freely Available Rigged Avatars

    Get PDF
    As part of the open sourcing of the Microsoft Rocketbox avatar library for research and academic purposes, here we discuss the importance of rigged avatars for the Virtual and Augmented Reality (VR, AR) research community. Avatars, virtual representations of humans, are widely used in VR applications. Furthermore many research areas ranging from crowd simulation to neuroscience, psychology, or sociology have used avatars to investigate new theories or to demonstrate how they influence human performance and interactions. We divide this paper in two main parts: the first one gives an overview of the different methods available to create and animate avatars. We cover the current main alternatives for face and body animation as well introduce upcoming capture methods. The second part presents the scientific evidence of the utility of using rigged avatars for embodiment but also for applications such as crowd simulation and entertainment. All in all this paper attempts to convey why rigged avatars will be key to the future of VR and its wide adoption

    TactileGCN: A Graph Convolutional Network for Predicting Grasp Stability with Tactile Sensors

    Get PDF
    Tactile sensors provide useful contact data during the interaction with an object which can be used to accurately learn to determine the stability of a grasp. Most of the works in the literature represented tactile readings as plain feature vectors or matrix-like tactile images, using them to train machine learning models. In this work, we explore an alternative way of exploiting tactile information to predict grasp stability by leveraging graph-like representations of tactile data, which preserve the actual spatial arrangement of the sensor's taxels and their locality. In experimentation, we trained a Graph Neural Network to binary classify grasps as stable or slippery ones. To train such network and prove its predictive capabilities for the problem at hand, we captured a novel dataset of ~ 5000 three-fingered grasps across 41 objects for training and 1000 grasps with 10 unknown objects for testing. Our experiments prove that this novel approach can be effectively used to predict grasp stability.This work has been funded by the Spanish Government with Feder funds (TIN2016-76515-R and DPI2015-68087-R), by two grants for PhD studies (FPU15/04516 and BES-2016-07829), by regional projects (GV/2018/022 and GRE16-19) and by the European Commission (COMMANDIA SOE2/P1/F0638), action supported by Interreg-V Sudoe

    Fast image representation with GPU-based growing neural gas

    No full text
    In this paper, we propose a fully automatic and computationally efficient algorithm for analysis of sports videos. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos
    corecore